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We present the results of an investigation of the Prony-Lanczos (P-L)

method [14,38] and the power method [39] for simple computation of

approximations to a few eigenvectors and eigenvalues of a Hermitian matrix.

We are motivated by realization of high-resolution signal processing in an

integrated circuit. The computational speeds of the above methods are

analyzed. They are completely dependent on the speed of a matrix-vector

product operation. If only a few eigenvalues or eigenvectors are needed, the

suggested methods can substitute for the slower methods of the LINPACK or

EISPACK subroutine libraries. The accuracies of the suggested methods are

evaluated using matrices formed from simulated data consisting of two

sinusoids plus gaussian noise. Comparisons are made with the corresponding

eigenvalues and eigenvectors obtained using LINPACK. Also the accuracies of

frequency estimates obtained from the eigenvectors are compared.
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5 I. Introduction

We are motivated by the use of eigenvector decompositions of data

matrices or estimated covariance matrices for detection of signals in noise

*and for estimation of signal parameters. This has evolved from early work of

Liggett [1] and Owsley [2]. to adaptive-array-detection improvements of

Tufts and Kirsteins [3,33] and high-resolution parameter estimators of

Cantoni and Godara [4], Bienveuu and Kopp [5], Owsley [6], Schmidt [21] and

Tufts and Kumaresan [7,32].

Principal component analysis, using principal eigenvalues and

eigenvectors of a matrix, was initiated by Karl Pearson (1901) [8], and

Frisch (1929) [9] in the problem of fitting a line, a plane or in general a

subspace to a scatter of points in a higher dimensional space. Eckart and

Young [342 presented the use of singular value decomposition for finding

low-rank approximations to rectangular matrices. C.R. Rao examined the

applications of principal component analysis [10]. Eigenvector analysis is

also used in image processing to provide efficient representations of

pictures [11]. Recently, principal component analysis has been coupled with

the Wigner mixed time-frequency signal representation to perform a variety

of signal processing operations [28,30,31].

Linear Prediction techniques for estimation of signal parameters,which

are modern variants of Prony's method, can be improved using eigenvector

decomposition [7]. Prony's method is a simple procedure for determining the

values of parameters of a linear combination of exponential functions. Now

*Prouy's method' is usually taken to mean the least squares extension of the

method as presented by Hildebrand [13]. The errors in signal parameters

which are estimated by Prony's method can be very large [14]. If the data

is composed of undamped sinusoids, the forward and backward prediction



equations and a prediction order larger than the number of signal components

can be used simultaneously as advocated by Nutall [22], Ulrych and Clayton

[23], and Lang and McClellan (24]. Tufts and Kumaresan have shown how one

can improve such methods of parameter estimation by going through a

preprocessing step before application of Prony's method [7,15,16,17].

The measured data matrix or the matrix of estimated covariances is replaced

by a matrix of rank M, which is the best least squares approximation to the

given matrix. If there is no prior information about the value of M, it is

estimated from the data using singular value decompositon (SVD).

The eigenvalue problem [37] is one area where extensive research has

been done and well established algorithms are available in highly optimized

mathematical libraries such as LINPACK and EISPACK [40] .The computational

complexity of these algorithms is of order O(N3) where N is the size of the

matrix. They solve for the complete set of eigenvalues and eigenvectors

of the matrix even if the problem requires only a small subset of them to be

computed. For the above applications,only a few principal eigenvectors and

eigenvalues are needed. Hence,we would like to use a method which uses this

specialization to reduce the computations.

Tufts and Kumaresan [29,32,33] have suggested procedures for

improving Prony's method without computation of uigenvectors. These appear

to perform about the same as the more complicated approaches which use

eigenvalue and eigenvector decomposition. The approach in [29] is based on

the results of Hocking and Leslie for efficient selection of a best subset

[25]. The approach of [32] and [33] is based on the simple computations

which result from using the longest possible prediction interval.
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Here we investigate two different approaches to achieving SVD-like

improvement to Prony's method without the computational cost of actually

computing the SVD or computing all eigenvectors and eigenvalues. The idea

is to calculate the few,necessary eigenvalues and eigenvectors using the

power method [391 and a method of Lanczos [14]. Our derivation of Lanczos'

method stresses the connection with Prony's method . The methods are

analyzed and their amounts of computation are calculated. Simulations are

performed and results are compared to the singular value decomposition

method in LINPACK.

II. The Prony-Lanczos Method

Let us assume that we start with a given square,,ermitian matrix A for

which we want to compute the principal eigenvectors and eigenvalues. For

examples, this could be either the true underlying, population covariance

matrix or the estimated covariance matrix [36] from spatial or temporal

data. Let us also define the eigenvectors and eigenvalues associated with

Uthe matrix A (dimension A=n).
Aui = i , i = 1,2,...,n (1)

where ui uj = 0 , i # j

u uj = i = j , that is ui are orthonormal vectors. (2)

The asterisk is used to denote a complex conjugate transpose.

The characteristic polynomial associated with the matrix A is given by

det(A - XI) = 0 (3)

Expanding the determinant we have the polynomial equation

XIn + Pn-I + • • • + Po = 0 (4)

and the roots of this polynomial will give us the eigenvalues Xi of the

matrix. We briefly summarize the procedure for obtaining the eigenvalues Xi

S3



based on the Lanczos 'power sums' as presented in [14]. We shall show that

the eigenvalues can then be obtained from the power sums by Prony's method

[13].

Let us select a starting vector bo . We assume that the starting vector

b has a non-zero projection on the eigenvectors of the matrix A

corresponding to the eigenvalues that we want to compute.

We then analyze the vector b in the reference system of the vectors

{u], which are the set of orthonormal eigenvectors of the matrix A:

" -b~o = 11 -R1 + T2 -R2 +  "" n -in(5

where

T = ui*bo (6)

Hence, using equation (1),successive vectors formed by premultiplications

of bo by powers of the matrix A can be represented as follows

b2 = A2 b 0  A = 1 11
2 ul + 2 2

2 2 2+ • n Un2 n (7)

bk+l = Ak bo = 4k A T1k 2U1 +2 k  2 k • •+ +  n kn k Un

Let us form the set of basic scalars:

c i+ k = h i s *I k  Il k* b i  (8)

Then we shall have:

ck k + I' 2 k2k + + I.,n1 2  k Ak b. (9)

which were called by Lanczos the *weighted power sums' [14]

The problem of obtaining Xi's from the ci's is the "problem of weighted

moments' [14]. That is the problem of Prony [12] and the old and modern

versions of Prony's method can be used to estimate the ki's.

A The prediction-error-filter equations of Prony's method can be written

1 ' as follows:

4



c g + c g1 + . . + c 1  + C =0

c1g 0 + C + . . + Cngn_1 + Cn+1 =0

(lOa)

-+ C + + 1 + C2  0

no n+11 + C2n-lgn_
1

or in matrix form,

C • 0 (lOb)

A non-zero solution is possible if the determinant of C is zero.

From the theory of Prony's method [13]

g(X-) , + inX+ + • •• + +i + 0 (g=)

hence the polynomial coefficient vector j is also orthogonal to the vector

(1 Xi Xi2 . . . Xik T where i's are the eigenvalues of the matrix A.

Lanczos noticed that Prony's method can be simplified if we substitute

the sequence (1 ki Xi
2 . . . kin) for a row of the matrix C to form a matrix

C'. If we replace the matrix C by C' in (lOb), the non-zero vector I is

still a solution, because of (11). Hence the determinant of C' must be zero.

1 2

det C' = C c • I
0 c 1  c 2  .. cn

- p'(k.) = 0 (12)

Sn-1 n ....... .... c2n-1

Hence, the ki's can be obtained directly by finding the zeros of the

polynomial p'(z). That is, Lanczos showed that it is not necessary to first

I5
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solve equations (10) for the prediction-error-filter coefficients.

Thus,in the absence of noise, we know that entering the weighted power

sums ck of (8) in equation (12) and finding the roots of the resulting

polynomial will provide us with accurate estimates of the true eigenvalues

Xi of the covariance matrix A. Note also, that equation (12) can be
reduced to a 2 nd order equation involving only co, cl, €2' c3 and still

provide us with accurate solutions for our problem of estimating one or two

sinusoids.

Now, if our data is composed of one or two complex sinusoids, then the

(LxL) covariance matrix elements will be also one sinusoid or a sum of two

sinusoids, hence the rank of the matrix will be one or two,respectively.

The eigen-decomposition of the matrix will show that it has only one or two

non-zero eigenvalues and hence it can be charucterized by a linear

combination of one or two eigenvectors, corresponding to the principal non-

zero eigenvalues. In Appendix A it is shown that these eigenvectors can be

expressed as a linear combination of complex sinusoids which have

frequencies equal to these of the sinusoids composing the data.

Now,suppose that we have accurately determined a few eigenvalues,say

two,, and X2,from the (nxn) matrix A. We wish to determine the

corresponding eigenvectors. Two concepts are used : (a) premultiplication of

a vector by the matrix ( A-XiI ) removes the ith eigenvector component of

that vector and (b) if a vector , to a good approximationconsists only of M

eigenvector components ,then removing (M-l) of these components leaves

one,isolated eigenvector component.

Let us consider the special case of a rank two matrix

A X l_1l + u (13)

6



From equations (5) and (13) we have:

Ab° = Tl l1 + T2X2 u2  (14)

Thenour preliminary,unnormalized estimates of the two principal

eigenvectors are

i1' = (A-%21)Abo = (A-X2 1)(T 1XlR 1+T2%2 R2 )

= Tik12  + X22 2 - TilYX2R - T2X22u2 =

= lxl(xl-x 2)Ul (15)

And similarly for the second eigenvector estimate we have

"22 = '2 X2 (X2 -X1)u2  (16)

Normalizing the eigenvectors ui' (i=1,2) we can write (15) and (16) as

1= ej 0 1 1 4 01= angle of 'lkl(Xl-X 2 ) (17)

= eJ'02 u 02 angle of T2X2 (X2-k1 ) (18)

In general ,given the required eigenvalues from the earlier Prony

calculationwe estimate an unnormalized kth eigenvector from the formula

ukj = T ( A-kiI ) Ab°  (19)

i-#k

* 7
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where the number of factors in the product depends on the number of

significant eigenvector components in Abo.

Finally, a few comments should be made on the selection of the starting

vector bo . Our sole assumption until now has been that bo has a non-zero

projection on some eigenvector of A that we want to compute. A good bo

vector would have to be biased in favor of the principal eigenvectors. re

have found that the Fourier vector provides a very good selection for b0 .

This vector will have its fundamental frequency computed from the maximum

peak of the DFT data spectrum. Very frequently in signal processing

applications the data is preprocessed through a DFr step for a coarse

analysis. This is a valuable bonus for our method to use the available

information for further processing.

III. The Power Method

Suppose A is a Hermitian (nxn) matrix. The SVD theorem [37] states

that A can be written as:

A=U S" (20)

where U is a unitary matrix and S is a matrix consisting of real only

diagonal elements [371.

The power method computes the dominating singular vectors one at a time

and is based on solving the equation:

su Au (21)

8
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for the singular vector u and the singular value s. The power method uses

an iterative scheme to solve (21). We instead suggest a two-step solution

using an appropriate starting vector bo:

-i = A b / 1lA bol (22)

The singular value is chosen to be:

s$ = IIA boil (23)

In order to obtain the next singular vector, the estimated singular plane

,(uuT) is removed from A using the following deflation procedure (371:

A' = A - s I , jUllT (24)

and the procedure is repeated with matrix A to yield s2,U2.

The selection of bo is very important and the Fourier vector provides a

very good estimate. This preprocessing step can be implemented in VLSI very

efficiently using summation-by-parts [28] or the Fast Hartley Transform

[42,43] methods. A necessary thing required to implement the power method

is a circuit capable of computing matrix vector products of the form Au.

LI But the rounding errors associated with it are always worrisome limiting the

usefulness of the power method. For this reason we propose to use the

permuted difference coefficients (PDC) algorithm [26,27] coupled with the

known Fourier vector to perform the above operation with high accuracy and

no round-off errors. A VLSI implementation for the PDC algorithm can be

easily realized using a random access memory (RAM) toghether with a read-

9



only-memory (RON) where the original Fourier coefficients and the subsequent

reordered coefficients addresses are stored.

IV. Operation count

In this section we calculate the total operations needed for the

singular value decomposition (LINPACK), the Prony-Lanczos method and the

Power method.

(1). The matrix eigenvalue problem has been solved in both LINPACK and

EISPACK mathematical libraries. The LIUPACK SVD routine is presented here.

The solution can be divided in three steps: reduction to bidiagonal

forminitialization of the right and left unitary matrices U and V and the

iterative reduction to diagonal form.

The reduction to bidiagonal form has the following floating point

multiplication count (for a square NxN matrix):

2[ N3 - N3/31

Approximately the same number of additions are required.

In the second step the amount of work involved when only the right-hand

side matrix V is computedis:

2N3/3

floating point multiplies and approximately the same number of additions.

In the last step rotations are used to reduce the bidiagonal matrix to

diagonal form. Thus the amount of work depends on the total number of

10
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rotations needed. If this number is r, then we have the following

multiplication counts:

-a

4Nr

The number r is quite difficult to estimate. There exists an upper bound for

*r_

r . sN2 /2

where s is the maximum number of iterations required to reduce a

superdiagonal element as to be considered zero by the convergence criterion.

Hence the total operation count for the LINPACK SVD solution is:

2N3 +4Nr _ 2N3 (s+1) flops

where by the term 'flop' we denote a floating point multiply-add operation.

(2). The Prony-Lanczos method is entirely dependent on the speed of a

matrix-vector product operation . For a rank two square matrix of size N we

shall have:

The matrix-vector multiplications to determine the vectors bi involve

N floating point multiplications and (N-1) floating point additions per row

for a total of

N2 flops

( 2N2 flops for the two vectors b1 ob2 ). The scalar weights ci ,i=0,1,2,3

1V.

N l a% ~~



require vector-vector inner products for a count of N multiplications and

(N-i) additions per weight . Therefore the total is:

4N flops

The computation of the eigenvalues from the (second order) determinant

condition involves 12 flops and one square root calculation. Finally,the

eigenvector computation requires N flops for each vector for a total of 2N

flops.

Hence the total operation count for the Prony-Lanczos procedure

requires:

(2N2 +6N+12) flops + 1 square root

The above computations do not include the work required to select the

starting vector b0 using a DFT analysis. In this case,assuming a data

sequence zero padded to M points,we shall have:

Mlog 2 M flops

plus (M-1) additions for the determination of the maximum spectral peak.

I(3). The power method computes the dominating eigenvalues and

eigenvectors one pair at a time . The second pair will be computed following

a deflation of A. In general, the number of iteration steps depend on the

convergence criterion severity . We instead claim that two-steps are

generally enough to provide sufficient accuracy. The Fourier vector is again

selected as the starting vector bo.

12



The first eigenvalue/eigenvector pair requires 2N2+2N flops. The
l deflation stop requires N2 flops and N2 floating point additions.

k "  Bence (for a rank two matrix) the power method requires a total of

5N2+4N flops

plus N2 floating point addtions.

V. Simulation results

Let us assume that we have a data sequence which is composed of

uniformly spaced samples of two closely spaced complex sinusoids in white

noise. We shall follow the methods described earlier in section II & III to

calculate the principal eigenvalues and eigenvectors.

The data sequence is given by the equation

x(n) = exp(j2nfln + 01) + exp(j2nf 2 n + 02) + w(n) (25)

with f, = 0.52Hz, f2 - 0.3Hz and for n=l,2,...,25

Here, 25 data samples are used and the phase difference is AO = n/2

computed at the middle of the data set, effectively reducing the signal-to-

noise ratio in that region, thereby representing the worst case that can be

encountered. The frequency separation is less than the reciprocal of the

observation time. The data is zero padded to m=128 points and then the

maximum peak of the DFT is computed to yield the frequency of the Fourier

vector. This vector will be used as a starting eigenvector for the P-L and

Power methods later.

We construct the forward plus backward augmented covariance matrix A of

13



size (21x21) . Its effective rank is two. The SVD routine ,the-P-L method

and the Power method are employed to solve for the eigenvalues and

eigenvectors (eigenpairs) of the matrix. The P-L method and the Power

method compute only the two principal eigenpairs. The mean values and

standard deviations of the eigenvalue estimates are given in Table I for an

ensemble of 500 experiments. The performance of the P-L and Power methods is

almost identical to the SVD (LINPACK) method for the first eigenvalue

estimates. At high SNR the second eigenvalue mean and standard deviation

estimate obtained from the P-L method is biased with respect to the

.fl. noiseless SVD results. However ,at low SNR the eigenvalue statistics are

closer to the noiseless SVD results than the other two methods.

Table II presents the statistics of the distances of the P-L and Power

methods eigenvectors from those of the SVD method. The distance is the

inverse cosine of the angle between the subspaces spanned by the estimated

eigenvectors [41]. The results show that for the first eigenvector the P-L

estimate of the mean is less biased (about one order of magnitude) than the

Power method, whereas for the second eigenvector estimates they perform the

same. This shows that these vectors span virtually the same subspace as the

vectors computed from the SVD method. The eigenvector estimates were also

compared to the signal eigenvectors and the distances were computed as

above. The results show that at high SNR the eigenvector spanned subspaces

have a greater distance from the signal subspace than the SVD subspace. At

low SNR the distance is reduced and the second eigenvector statistics are

closer to the signal eigenvector than the SVD eigenvector.

Table III shows the CPU time required to compute the

eigenvalues/eigenvectors pairs for these methods. The P-L method is faster

than the SVD by the order of the size of the covariance matrix, which here

14



is 21. This roughly agrees with the theoretical operation count we presented

in section IV. It is almost twice as fast as the Power method. Inclusion of

the FFT computation in these two methods will offset some of their speed

advantage over the SVD . Nevertheless ,the P-L method is again about one

:order of magnitude faster than the SVD method and the Power method a little

more than half that (6 times faster).

The frequencies fi are then obtained from the eigenvectors of the

estimated covariance matrix by the T-K method [7]. For both estimates of

the mean and standard deviation ,as presented in Table IV,all three methods

perform similarly down to 15 db. At Odb the P-L method yields slightly

better statistics than the other two methods.

VI. Conclusion

3 Two methodsthe Prony-Lanczos method and the Power method are proposed

for simple computation of approximations to a few eigenvectors and

eigenvalues of a Hermitian matrix. The computational speeds of these methods

were analyzed. The accuracies of the proposed methods were evaluated using

covariance matrices from data consisting of two sinusoids in a gaussian

noise environment. Comparisons were made with the corresponding eigenvectors

and eigenvalues obtained using the LINPACK mathematical library. The

suggested methods can substitute for the slower method of LINPACK if a few

eigenvalues or eigenvectors are needed.

C:.

%~c

N1



Appendix A:

In this appendix we derive the eigenvalues and eigenvectors of the

covariance matrix R for the case of one and two sinusoids.

One Complex Sinusoid Case:

The data sequence is modelled by:

y(n) = a1e , n = 1,2,..-.,N

The covariance values of y(n) are:

N

yy(n-i)y(n-j) ij=l,2...L (A.)

n=L+l

Writing the covariance matrix R explicitly in terms of the signal, we have:

lal 12ja 1
2 e -jw 1  isi 2 e-jwl(L- 1 )

ja12eJ1 a1 j 2  la 12 e-jw 1 (L-2) (A.2)

2 J~1(L) 2
.Ia e lal 1

We can diagonalize R by an orthogonal matrix U resulting in the following

16



equa t ion:

U RU = (A.3)
00

The eigenvalues of R which occur along the diagonal elementsnof the above

equation,satisfy the following equation:

= tr(R) = L laI!2 (A.4)
i=l

, But the covariance matrix R is of rank=l, since it has only one linearly

independent row (or column). The rest are obtained by multiplying by a

st constant number (e ).

Then the eigenvector corresponding to the eigenvalue X, = L Jal1 2 is:

jW1  2jwl j(L-_)w T

u1 = c1 (1 e a e )

P 17



since it annihilates every row of the matrix (R-X1I). The constant c1 can

be determined from the fact that the matrix U is orthonormal, hence:

U l

which yields:

~1
C 1

*Hence finally:

X 1 " 2jw I  j (L-1)o1  (A.5)

and this is a Fourier vector with fundamental frequency wi"

Two Complex Sinusoids Case:

The data sequences is modelled by:

18



jW 1n jW 2 n

y(n) a e i + a2 e n = 1,2,....N (A.6)

The covariance estimates are given by the expression:

N

r (km) L * (n-k)y(n-m) 2 - j 
1 (m-k) +=y N- = + (A.7)

n=L+l

2-Jw2
{ -k),,

+ la2j2 + ala2 v 1 + a2 a* v2  ,k,m= 1,2,....L

where:

N J 1 (n-m)-ji (a-k)
1  21

n=L+l

N ?W 2 (n-m)-jw 1 (n-k)
v 2  N- e

n=L+l

Rewriting the matrix R, we have:

R = M1 M2  (A.8)

(Lx2) (2xL)

where:

19



M,= nall2 el + x !2 ja2 12 e2 + x ell
M2 =[ el* s2 *iT

- = [1 eJWl e2jw1 ej(L-l)w ]T

2 = [1 ejw2 e2jw 2  e*j(L-1)w2]T

and

a1a2  J N2-W1)  -j(W2-W1)n

N-L

n=L+l

If u1 is an eigenvector of R corresponding to eigenvalue X1, then:

MI'2:1 = ).lu I  (A.9)

Premultiplying by M2, we have:

M2MlM2g1 = X1 M2 _u (A.10)

Thus X1 is also the eigenvalue of M2A 1 and the corresponding eigenvector is:

_XI = IJI2.! (A.11)

Premultiplying (A.10) again by M1

MIM2MI1 1 = )I1l_.Z (A.12)

and comparing (A.10) with (A.12)

1 = 
M g.1  (A. 13)

Thus we can find the eigenvalues and eigenvectors of R by working with the

matrix M2M 1 which is of order 2. Hence:
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M 2 , Lill 2+ XgIa 2 12g + Lx*La1l 2 gLxLisa212 + IL A.4

where

n0O n=O

The eigenvalues X, and X2 are found to be:

X= 1/2(Ljalj 2 + Lja 2I12 + 2Re~xg] + ((LlaiI 2 + Lja 2 1
2+ (A.16)

2Re~xgD)2 -4(L 2 - 1g12(ja 1121a212-1xI2

X= 1/2[LIalI2 + LI'2l12 + 2Re~xgl - ((LaiI2 + Lja 2I12 + 2Refxg}2 ) -

4(L 2 - jg12)(1a112 ja2 12 - x12))1/2

where

(a a2 3Cos(-- N-2)Aw si - Awsi A

Re(xg] Re 122 
2 Aw (A.17)

2(N-L) sin

Note that a column of the adjoint of (M2 Ml-)X1 I) Lives the eigenvector v, of

M2 M1.
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Adj(M 2M -XI) = (Llal 2 - xg) - -ja 2 I 2 g- Lx

-1al 2 a-Lx (Lia2 l 2 + xg)_X1 1  (A.18)

Therefore the eigenvector v1 is : v-V [vl v2 1]T

or v1 = [(LIaiI2 + xg)-X 1  -jal 2g-Lx]T (A.19)

Now the eigenvector uI of R corresponding to %I is:

u 1 = V1

and hence,

_ v (a,12 _el + xe2  +2 1([22 e2 + x* el). (A.20)
-Uta il 2  -2) + V21(ja2  2

a linear combination of the Fourier vectors e 1 and e2.

Similarly, the eigenvector u2 of R corresponding to X2 is:

u2 =vll'( a1 1
2e 1 + x.2) + v2 1'(a 2 l 2 2+x*el) (A.21)

where v1 = [v1l' V21'

and

vii' (LIa 2 12 + x*g*)-X 2  (A.22)

v21'= -1a 2 2 g - Lx

The rest of the eigenvalues of R are zero and the corresponding eigenvectors

are not unique.
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SNR SVD P-L PM

mean= 22.0357 22.0126 22.0174
i0

st.dev= 0 0 0

22.0636 22.0423 22.0353
30

0.2652 0.2655 0.2642

22.0341 22.3182 22.2957
15

1.4927 1.4936 1.4892

28.8561 28.5285 28.5425

8.6489 8.7576 8.7477

Eigenvalue estimate kI

1.7107 0.5741 1.7131

0 0 0
----------------------------------------------- i-------------

1.7162 0.7504 1.7199
30

0.0497 0.3777 0.0498

-- 1.8634 1.0327 1.8677
151 0.2856 0.5357 0.2884

10.5379 1.6797 7.3859
0

2.7981 1.2625 2.6301

Eigenvalue estimate X2

TABLE I
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SNR SVD,P-L SVD, PM

mean= 0 0.4770 -4

st.dev = 0 0

0.6980 -5 0.5819 -4
30

0.1938 -4 0.7575 -4

0.2775 -4 0.1991 -3
15

0.5746 -4 0.1606 -3

0.5305 -2 0.5932 -2
0

0.1019 -1 0.1035 -1

First Eigenvector Distances

0.3917 -4 0.6169 -4

0 0

0.1744 -3 0.3283 -3
30

0.1162 -3 0.2850 -3

0.4618 -2 0.2055 -2
15

0.3682 -2 0.1110 -2

0.8243 -1 0.7146 -1
-~ 0

0.2614 -1 0.2938 -1

Second Eigenvector Distances

TABLE II
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SNR SVD FFr P-L PM

w 0.30472 +5 0.14050 +4 0.15835 +4 0.27610 +4

30 0.24391 +5 0.14119 +4 0.15859 +4 0.27793 +4

15 0.24538 +5 0.14065 +4 0.15877 +4 0.27506 +4

0 0.25819 +5 0.14029 +4 0.15874 +4 0.27568 +4

Computational Cost
( measured in time units tswhere 1 ts= 26.04166 Vsec )

T A B L E III
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SNR SVD P-L PM

ma= 0.5000 0.5000 0.5000

st.dev= 0 0 0

0.4999 0.4999 0.4999
30

0.0013 0.0013 0.0013

0.4961 0.4952 0.4962

0.0157 0.0137 0.0154

0.4331 0.4620 0.4551
0

0.1334 0.0898 0.1082

Frequency Estimate f

0.5200 0.5200 0.5200

0 0 0

0.5201 0.5201 0.5201
30

0.0013 0.0013 0.0013

0.5251 0.5249 0.5251
15

0.0190 0.0141 0.0190

0.5717 0.5613 0.5642
0

0.1184 0.0893 0.0980

Frequency Estimate f

T A BL 9 v
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